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Air Traffic Management

«Air traffic management (ATM) considers the trajectory of a manned 
or unmanned vehicle during all phases of flight and manages the 
interaction of that trajectory with other trajectories or hazards to 
achieve the optimum system outcome, with minimal deviation from 
the user-requested flight trajectory, whenever possible.» (ICAO Doc. 
9854, §1.9.2 )

Decision levels towards effective flight plans:
 Strategic (months to week before): airspace capacity
 Tactical (days to hours before): up-to-date capacity, regulations
 Operational (day of flight): collision avoidance
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Air Traffic Flow Management Problem - ATFM
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Airspace capacity restrictions
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 Airport capacity
 Arrival / departure

 En-route sectors capacity
 Num. flights that can enter (ECAC) [cross (NAS)] per time unit
 Depends on geometry (e.g. size) and ATC resources
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An example

[Eurocontrol - DDR2 + NEST]

Congestion!
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Possible strategies: a toy example

4 flights
Sector capacity: 1 or 2
Cross time 1 t.u.:
STD: time 0

User requested unfeasible
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Possible strategies: a toy example

4 flights
Sector capacity: 1 or 2
Cross time 1 t.u.:
STD: time 0

User requested unfeasible

a) 1 t.u. of Ground Delay
1 t.u. of Airborne Delay
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4 flights
Sector capacity: 1 or 2
Cross time 1 t.u.:
STD: time 0

User requested unfeasible

a) 1 t.u. of Ground Delay
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b) 2 t.u. of Ground Delay
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Possible strategies: a toy example

4 flights
Sector capacity: 1 or 2
Cross time 1 t.u.:
STD: time 0

User requested unfeasible

a) 1 t.u. of Ground Delay
1 t.u. of Airborne Delay

b) 2 t.u. of Ground Delay

c) Deviation (1 t.u., cost+)
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Possible strategies: a toy example

4 flights
Sector capacity: 1 or 2
Cross time 1 t.u.:
STD: time 0

User requested unfeasible

a) 1 t.u. of Ground Delay
1 t.u. of Airborne Delay

b) 2 t.u. of Ground Delay

c) Deviation (1 t.u., cost+)

d) Speed control (1 t.u.)
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Air Traffic Flow Management Problem (ATFM): 
general statement

Given
 A set of flights with initial 4D trajectories
 Airspace configuration and capacity restriction
determine
 A set of modified trajectories
such that
 Capacity restrictions are satisfied
 System «efficiency» maximized (e.g. minimum delays, 

minimum deviation, airspace users’ preferences)
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Some Integer Programming models for ATFM

Helme (1992): ground holding, airborne delay

Bertsimas & Stock-Patterson (1998): + speed control

Bertsimas & Stock-Patterson (2000): + rerouting (small instances)

Bertsimas, Lulli & Odoni (2011): + rerouting, fairness

Augustin, Alonso-Ayuso, Escudero (2012): + waypoints

Djemou, Lulli & Zografos (2017): + flight levels, TBO

Akgunduz, Jaumard & Moeini (2017): collision avoidance

Diao & Chen (2018): collision avoidance
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“Classic” IP models: decision variables

 x(f,j,l,t): 1 if flight f reaches sector j at flight level l by time t
 y(f,j,l,t): 1 if flight f is in sector j at flight level l at time t
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[BS 1998]

[BLO 2011]
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“Classic” IP models: objective function (simplified) 

 E.G.: weighted sum of ground ( gf ) and airborne delays
( af ) w.r.t. nominal initial flight routes ( df and rf )
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t is the time f departs/arrives
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“Classic” IP models: connectivity (simplified)

one flight level (FL) 
per sector

Ij
f t.u. from sector j 

to j’, the next in the 
route (here, fixed 
route and speed)

maximum δj
f (FL 

variation) from j to j’

Ij
f and δj

f at the 
arrival airport
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“Classic” IP models: capacity (simplified)
 Dynamic capacity at time t for

- airport k Departures and Arrivals
- flights crossing en-route sector j
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At time t, f is entered (at any level l) and 
not yet exited (at any level l’, towards any 
sector j’) from sector jLuigi De Giovanni – A data-driven approach to ATFM
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Other constraints

 Variable 𝒙 consistency (= 1 from some t on)

 Variables 𝒙 determine variables 𝒚

 Domains
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Research motivations

 “We cannot fly that trajectory” 
(too many vertical / horizontal 
deviation, «technical» 
limitations etc.)
 Add constraints, but lose 

model structure

 “We prefer not to fly that trajectory - sorry, cannot say why” 
(business model is hardly revealed)
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Basic idea: consider deviating flights on historical trajectories 
and learn users’ preferences from data repositories 

Basic idea: consider deviating flights on historical trajectories 
and learn users’ preferences from data repositories 
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IP model based on trajectory selection

Odysseus2018 14

 Given* sets 𝑷(𝒇) of “possible” 4D trajectories for each flight 𝒇
 Given* parameters 𝑮 𝒑, 𝒇 : preference of flight 𝒇 to fly trajectory 

𝒑 ∈ 𝑷(𝒇)

 Variables directly model the selection of one trajectory:
𝒚𝒑

𝒇: 1 if flight 𝒇 flies trajectory 𝒑 ∈ 𝑷(𝒇), 0 otherwise

 Objective: minimize 𝒅𝒆𝒍𝒂𝒚𝒔 / maximize ∑ 𝑮𝒑
𝒇 

𝒇,𝒑 𝒚𝒑
𝒇

 Combine objectives or multi-objective approach

 Constraints: assign one trajectory to each flight, sector capacities 

* Learn 𝑷(𝒇) and 𝑮𝒑
𝒇

from historical data on actually flown trajectories
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Learning 𝑷 𝒇 : methodology
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1. Extract all the DDR2 trajectories between (almost) same 
origin-destination pair as 𝑓

2. Determine (subsets of «similar») possible trajectories
 Use clustering to filter noise (and keep the number of 

variables limited)

3. Extract reference trajectories to feed ATFM models
 𝑷(𝒇) contains the clustered trajectories (or some 

representatives, e.g. the 1-center of each cluster)
 For each trajectory determine: airborne delay, 

airspace capacity utilization 𝐴௣௦ 𝑡 … (from DDR2)
Luigi De Giovanni – A data-driven approach to ATFM
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Learning 𝑷 𝒇 : DDR2 trajectories

 Sequence of points in 
4D: WPx, WPy, FL, time

 Different 3D route 
structures

 Different speeds

 Other available info: 
callsign, A/C type, STD, 
cost, etc.
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Learning 𝑷 𝒇 : trajectory clustering

 Resample each trajectory: from differently many WPs 
to a same number n of equidistant 4D points
 each trajectory is represented as a vector of n x 4 

elements (x1,y1,FL1,t1 , x2,y2,FL2,t2 , x3,y3,FL3,t3 , …)

 Run a Principal Component Analysis to reduce 
dimensionality (keep most variance)

 Run a clustering algorithm (DBSCAN:
flexibility, outliers detection)

[similar to Gariel et al. 2011, Liu et al. 2017]
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Example: DDR2 data for Rome-Paris

 From June 15 to September 15, 2016
 ~ 2000 flights (LIRF, LIRA)  (LFPG, LFPO, LFOB)
 16 to 38 WPs, 76 resampled hits

7 Sept 2016 14 Sept 2016
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Example: clustering of trajectories
Rome - Paris

Istanbul - Frankfurt
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Learning trajectory preferences 𝑮𝒑
𝒇

Odysseus2018 20

1. Learn a tree classifier to predict the cluster flown by a 
flight based on some flight features
 day of the week, week number (seasonal effects), part of 

the day (morning, afternoon, evening, night), airline 
code, airline type (legacy/low-cost), aircraft model

2. Use the tree classifier and count, for each leaf 𝑙 and 
cluster 𝑐, the number 𝑛[𝑙, 𝑐] of flights in 𝑙 flying a 
trajectory in 𝑐

3. 𝐺௣
௙ is obtained by normalizing 𝑛 𝑙 𝑓 , 𝑐 𝑝 , where 𝑙(𝑓)

is the leaf reached by 𝑓 and 𝑐(𝑝) is the cluster of 𝑝 
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Learning trajectory preferences: Rome-Paris

5-fold cross validation:
precision 0.917 (±0.006)
recall 0.941 (±0.003)

Flight 𝑓 and trajectories 
𝑎 (belonging to cluster 0) 
and 𝑏 (cluster 1)

G௔
௙

= 0.22 G௕
௙

= 0.69
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Learning trajectory preferences: Istanbul-Frankfurt

5-fold cross validation:
precision 0.666 (±0.031)
recall 0.708 (±0.017)
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Learning trajectory preferences: 
interrelation strength between flight features

airline

legacy 
/ low 
cost

aircraft 
model

day 
part weekday week month

Rome - Paris 0.57 0.62 0.45 0.18 0.07 0.05 0.01

Istanbul - Frankfurt 0.28 0.17 0.22 0.11 0.10 0.20 0.18

Cramer's V index (Bergsman's bias correction) between cluster and flight features
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 Preference model performance and interrelation depend on 
O/D pair

 Towards determining trajectory determinants
 Include further flight features and avoid “airline” 
 May provide a better trajectory-preference model
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Conclusions and perspectives

 ILP formulation for ATFM based on 4D trajectory selection
 More realistic solutions
 Take user preference into account

 Data analytics to determine model parameters
 Identify typical trajectories via clustering
 Learn clusters and related preferences via tree classifiers 

 Future work
 Plug results from DDR2 into the ILP model
 Evaluate performance and assess possible benefits
 Improve the trajectory preference model
 Allow further trajectories by column generation
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